If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X=4623
We move all terms to the left:
X^2+X-(4623)=0
a = 1; b = 1; c = -4623;
Δ = b2-4ac
Δ = 12-4·1·(-4623)
Δ = 18493
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{18493}}{2*1}=\frac{-1-\sqrt{18493}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{18493}}{2*1}=\frac{-1+\sqrt{18493}}{2} $
| 19x=19/2 | | 19x=19x/2 | | −16−5x=-16−16 | | 5n+2−2 = 3n+8 | | 5n+2−2 = 3n+8- | | x^-2=30.25 | | x^-2=30.5 | | 2x/3-4/3=4 | | (3-4x)=8 | | 92a+3)-(4a-8)=7 | | 3a+4=60+4a | | 5(6-7x)=3(8x-11)-4(9x-25) | | Y=400+7x | | 40x=10x*4 | | x−2÷2=x+3÷4 | | x−2/2=x+3/4 | | F(6)=x-8 | | 11-9y=50 | | w2+1=82 | | 6m+7=3m-35 | | -6(2y-11)=-6 | | 3(5w-11)=72 | | 3(m-4)=36 | | X+y-12=00 | | 3(x+1)2-189=0 | | |10n+3|=-67 | | (h-10)/2=-7 | | 3t+4=12+t3 | | (4x-3)+(2x+7)=180 | | (4x-3)+(2x+7)=90 | | a²-3a-4=0 | | z^2+9z-25=0 |